水利部办公厅关于印发《全国水资源承载能力监测预警技术大纲（修订稿）》的通知

各流域机构，各省、自治区、直辖市水利（水务）厅（局），各计划单列市水利（水务）局，新疆生产建设兵团水利局：

根据《水利部办公厅关于做好建立全国水资源承载能力监测预警机制工作的通知》（办资源〔2016〕57号）安排，按照水利部关于建立全国水资源承载能力监测预警机制工作的有关新要求，我部会同有关单位在总结试点工作经验基础上，对《建立全国水资源承载能力监测预警机制技术大纲》进行了修订，主要增加了水质要素评价和河流水系的复核分析内容，对地下水评价指标等部分技术规定进行了修改完善，形成《全国水资源承载能力监测预警技术大纲（修订稿）》。现印发给你们，请按照修订后的技术大纲抓紧开展工作。修订后的技术大纲可在水资源承载能力全国QQ群下载（未加入群的人员请向联系人申请加入）。

请各流域机构于2017年1月底前完成省区成果（以地级行政区为单元）汇总审核工作，提出流域水资源承载能力评价成果，报
全国技术组汇总审核。

联系人及电话：郭东阳 13488661480

附件：全国水资源承载能力监测预警技术大纲（修订稿）

中华人民共和国水利部

2016年11月15日
全国水资源承载能力监测预警

技 术 大 纲

（修订稿）

水利部水利水电规划设计总院

2016 年 11 月
目 录

一、总则 .. 1
 (一) 总体目标 ... 1
 (二) 主要任务 ... 2
 (三) 基本规定 ... 3
 (四) 技术路线 ... 4

二、基础资料收集整理与复核分析 ... 8
 (一) 基础资料收集整理 ... 8
 (二) 经济社会发展指标 .. 9
 (三) 水资源量 ... 9
 (四) 水资源开发利用状况 ... 10
 (五) 水环境状况 ... 13

三、水资源承载能力核算 ... 14
 (一) 用水总量指标 ... 15
 (二) 地下水开采量指标 .. 15
 (三) 水功能区水质达标要求 ... 16
 (四) 水功能区污染物入河限排量 ... 17
 (五) 指标合理性分析 .. 17

四、水资源承载负荷核算 ... 18
（一）用水总量 .. 18
（二）地下水开采量 .. 19
（三）水质要素承载负荷 ... 20

五、水资源承载状况评价 ... 23
（一）水量要素评价 .. 23
（二）水质要素评价 .. 25
（三）综合评价 .. 27
（四）河流水系水资源承载能力复核分析 27

六、超载成因分析 ... 32

七、调控措施建议 ... 34

八、承载能力监测预警机制建设 35

附录 1 重点河流水系名录 .. 37
附录 2 县级行政区水资源量拆分方法 38
附录 3 水质要素评价有关技术问题处理方法 41
一、总则

为贯彻落实党的十八大、十八届三中、四中、五中全会精神和习近平总书记关于“抓紧对全国各县进行资源环境承载能力评价，抓紧建立资源环境承载能力监测预警机制”的重要指示，按照《关于加快推进生态文明建设的意见》、《生态文明体制改革总体方案》、《水污染防治行动计划》的有关要求和国家发展改革委关于建立资源环境承载能力监测预警机制工作的总体安排，水利部在全国范围内组织开展水资源承载能力监测预警机制建设工作。为了统一全国、流域和省区的技术口径、技术方法、技术要求，指导流域和省区开展技术工作，特制定《全国水资源承载能力监测预警技术大纲》（以下简称《技术大纲》），重点界定水资源承载能力与承载负荷的核算方法、承载状况的评价方法及相关技术要求。

(一)总体目标

建立水资源承载能力监测预警机制的总体目标是摸清全国、流域及区域水资源承载能力，核算经济社会发展对水资源的压力与承载负荷，对全国县域水资源承载状况进行动态评价，建立水资源承载能力动态监测预警机制，定期发布监测预警报告，对水资源承载负荷超过或接近承载能力的地区，实行预警提醒和限制性措施，构建政策引导机制和空间开发风险防控机制，促进水资源与人口经济均衡协调发展。
近期工作目标是开展第一次全国水资源承载能力评价，摸清全国县域水资源承载能力，核算现状县域水资源承载负荷，评价现状水资源承载状况，构建水资源承载能力预警平台。

（二）主要任务
本次工作的主要任务为：

1、核算县域水资源承载能力。根据全国水资源综合规划、最严格水资源管理制度 “三条红线”、主要江河流域水量分配方案、全国水中长期供求规划、全国地下水资源与保护方案、全国水资源保护规划等已有成果，以流域和区域水资源开发与保护控制指标为基础，根据协调和确定县域水资源相关成果，核算县域水资源承载能力。

2、核算县域现状水资源承载负荷。根据各级统计数据、水利统计数据、水资源公报、水资源质量状况通报（年报）水利普查、水中长期供求规划、地下水资源与保护方案、水资源保护规划等有关资料，分析现状经济社会发展对水资源与水环境的压力，从水资源开发利用与水环境容量占用情况等方面核算现状水资源承载负荷。

3、评价县域现状水资源承载状况。根据水资源承载能力和现状承载负荷，开展县域现状水资源承载状况与程度评价，划分水资源承载负荷等级，并分析超载原因，研究提出水资源
源管控措施建议。

4、建立水资源承载能力监测预警机制。研究确定预警标准，建立监测、预警、发布、管控制度体系，初步建立水资源承载能力评价和监测预警与管控制度。在国家水资源监控系统建设的基础上，集成水资源承载能力核算、经济社会负荷计算、水资源承载状况评价为一体的全国水资源承载能力动态评价与预警系统平台。

（三）基本规定

1、范围。本次工作范围为全国 31 个省级行政区。

2、分区。工作分区包括省级、地级、县级行政区和水资源区，评价单元为县级行政区，对于城市中心城区或市辖区属同一水资源三级区或同一供水系统的可适当归并。

3、重点河流水系。为了合理确定区域水资源承载能力，提出流域和区域控制性成果，需要以河流水系为单元，对水资源开发利用程度较高和水环境污染负荷较重的重点河流水系的水资源承载状况进行评价。本次工作重点对全国水资源综合规划和水中长期供求规划提出的存在地表水生态环境用水挤占的河流、开发利用程度已接近开发利用上限的河流、水环境污染负荷超过或接近其纳污能力上限的河流以及已经开展水量分配工作的部分河流进行复核分析，具体名录见附录 1。
4、现状年。试点地区以 2014 年作为现状年，全国地级行政区、县域单元评价工作以 2015 年作为现状年。

5、数据要求。经济社会发展相关指标数据应以国家、省、市级统计部门正式发布的统计数据为主。水资源及开发利用等相关数据应以全国水资源及其开发利用调查评价、水资源综合规划，水资源公报、水利统计年鉴为主，并结合城镇、农业等用水统计数据，必要时应开展补充调查，保证数据的真实性和可靠性。

6、指标要求。水资源承载能力评价采用的指标数据，要依据权威的数据和成果来源，主要包括全国水资源综合规划、最严格水资源管理控制指标、水中长期供求规划、水资源保护规划、地下水利用与保护规划等相关成果。

7、成果要求。为确保成果质量，在开展数据填报、成果评价、汇总协调等工作时，特别要重视有关基础数据一致性的审查、复核与分析工作；要注重相关控制目标与相关规划的协调性和合理性的复核与分析工作；要注重以流域及河流水系为单元的平衡分析校核工作，并采用多种方法进行相互比较、综合平衡，进行数据的合理性分析；对中间成果和最终成果进行综合分析、检查、协调与平衡。

（四）技术路线

1、基本定义
本技术大纲中水资源承载能力是指，可预见的时期内在满足合理的河道内生态环境用水和保护生态环境的前提下，综合考虑来水情况、工况条件、用水需求等因素，水资源承载经济社会的最大负荷。本次工作主要考虑水量、水质2类要素：水量要素是指在保障合理生态用水的前提下，允许经济社会取用的最大水量；水质要素是指在满足水域使用功能水质要求的前提下，允许进入河湖水域的最大污染物负荷量。

2、技术方法与路线

（1）总体技术路线

收集整理流域、区域经济社会发展指标有关数据、水资源调查评价、第一次全国水利普查、水资源有关规划、水资源公报等有关资料，建立以县域为单元的水资源及开发利用与污染负荷基础台账。根据流域及区域水资源禀赋条件、允许开发利用上限、“三条红线”管控要求、水资源调配能力和水功能区纳污能力等，对全国、流域及区域水资源及承载能力核算需要的基础资料和指标进行分解协调或补充复核，确定水资源承载能力。根据流域及区域经济社会发展状况、水资源开发利用情况、水功能区水质状况、主要污染物入河情况、生态环境用水挤占情况等，核算水资源承载负荷成果。根据流域及区域承载能力和承载负荷成果，分别评价水量和水质要素承载状况和综合承载状况，进行区域、流域及全国
层面复核协调平衡，提出流域及区域评价成果。根据评价结果，进行超载成因与趋势分析，提出水资源管控措施建议。

水资源承载能力评价总体技术路线见图1。

（2）水量要素评价方法

根据全国水资源及其开发利用调查评价，全国水资源综合规划，流域和区域三条红线指标分解等成果，获取评价区域水资源量、水资源可利用量、水资源配置方案、生态环境需水等水资源开发利用控制性指标，根据水利普查、水资源公报、经济社会统计等分析确定水资源开发利用程度与规模。根据河流水系水资源可利用量、地下水可开采量，综合规划确定的水资源配置方案，用水总量控制分解指标等，评价年份供水工程实际情况与水源调配能力等，在保障合理生态环境用水的前提下，综合分析并合理确定评价年份允许经济社会取用的最大水量，作为水量要素承载基线；根据经济社会现状取用水量等数据成果，分析水资源开发利用规模和程度，核算评价单元承载负荷；在此基础上，进行水量要素评价，确定水量要素承载状况等级。
水资源调查评价、水利普查、水资源综合规划、水中长期规划、水资源保护规划、地下水利用与保护规划等

省级、地级、县级行政区数据

水资源一级、二级、三级区数据

河流水系数据资料

自然条件

水资
源量
可利
用量
生态
需水

控制指标

调配能力

县域水资源承载能力

水资源承载能力基线核算

地表水供水量

地表水挤占量

地下水供水量

地下水超采量

经济社会取用水量

经济社会污染负荷

县域水资源承载负荷

水资源承载负荷核算

水资源承载状况综合评价

严重超载区

超载区

临界状态区

不超载区

超载原因与发展趋势

水资源管控措施建议

图 1 水资源承载能力评价总体技术路线
（3）水质要素评价方法

根据《全国重要江河湖泊水功能区》《全国水资源综合规划》《全国水资源保护规划》《全国重要江河湖泊水功能区纳污能力核定和分阶段限排总量控制方案》、各级水资源公报和现状年水质不达标水功能区名录等有关资料，获取水功能区水质达标目标要求、入河污染物限排量、污染物入河量和水功能区水质监测数据等。根据最新监测资料，获取地级行政区现状年水功能区水质状况和污染物入河量；在此基础上，进行地级行政区水质要素评价。有条件的将地级行政区内的水功能区分解到县域，进行县域水功能区水质达标评价；资料缺乏地区可只将超载和严重超载地级行政区水功能区分解到县域，并根据超载区县域水功能区水质达标情况、入河污染物的超标情况、污水处理能力和处理程度等资料，进行县域水质要素综合评价，确定水质要素承载状况等级。

二、基础资料收集整理与复核分析

（一）基础资料收集整理

收集各级统计年鉴、第二次全国土地调查成果，水利统计年鉴（年报）、水资源公报、水资源质量状况通报（年报）、环境统计年鉴，第二次全国水资源调查评价、水资源综合规划、流域综合规划、水中长期供求规划、地下水利用与保护规划、地下水超采区评价、水资源保护规划等成果，获取县
域单元和地级行政区套水资源三级区人口、GDP、工业增加值、耕地面积、灌溉面积等经济社会发展指标，水资源量、供用水量、地下水超采量、废污水排放量、主要污染物入河量、水功能区水质状况等水资源及开发利用基础数据。

（二）经济社会发展指标

1、根据省级、地级统计年鉴，获取县级（地级）行政区城镇常住人口、农村常住人口、地区生产总值、工业增加值、耕地面积。对于统计年鉴未公布县级行政区常住人口数据的地市，可将省级或地级统计年鉴中公布的地市常住人口，按照第六次人口普查县级行政区常住人口比例进行拆分。

2、根据水利统计年鉴（年报），获取县级（地级）行政区灌溉面积数据。

3、参考水资源公报、水中长期供求规划成果，分析获取地级行政区套水资源三级区城镇常住人口、农村常住人口、地区生产总值、工业增加值、耕地面积、灌溉面积等数据。

4、省级行政区水行政主管部门应按附表1格式填报县域单元（地级行政区）、地级行政区套水资源三级区的经济社会发展指标。

（三）水资源量

根据第二次全国水资源调查评价成果，获取地级行政区套水资源三级区、县级行政区的多年平均水资源量、平原区
地下水可开采量。

1. 对于第二次水资源调查评价时已进行县级行政区水资源评价的，直接采用该评价成果。

2. 对于第二次水资源调查评价时未进行县级行政区水资源评价的，可将地级行政区多年平均水资源量成果分解到县级行政区，分解方法见附录2。分解成果应与流域水系和地级行政区水资源量进行协调平衡。

3. 省级行政区水行政主管部门应按附表2格式填报县域单元、地级行政区套水资源三级区的多年平均水资源量、平原区地下水可开采量。

（四）水资源开发利用状况

1. 根据省级和地级水资源公报（当省级与地级水资源公报数据不一致时应依据省级成果），获取县级行政区供水量、水资源公报口径用水量。

（1）供水量指各种水源为本区域用水户提供的包括输水损失在内的水量之和，包括地表水源、地下水源和其他水源供水量。地表水源供水量指地表水工程的取水量，按蓄水工程、引水工程、提水工程、调水工程（指无天然河流联系的独立流域之间的调配水量，不包括支流之间的调配水量）等形式统计；地下水源供水量指水井工程的开采量，应分别按照浅层水和深层承压水、山丘区和平原区进行统计，其中深
层承压水应采用《全国水资源综合规划》和《全国地下水利利用与保护规划》口径，即与当地大气降水、地表水体没有密切水力联系且难以补给更新的承压水（多形成于地质时期，埋藏相对较深，补给、径流、排泄极其缓慢，难以循环更新）；其他水源供水量包括污水处理回用、集雨工程雨水利用、海水淡化、微咸水利用等水源工程的供水量。

（2）用水量是指区域内各类用水户当年实际取用的包括输水损失在内的水量之和，按生活用水、工业用水、农业用水和生态环境补水四大类用户统计，不包括海水直接利用量。生活用水包括城镇生活用水和农村生活用水，其中城镇生活用水由居民用水和公共用水（含第三产业及建筑业等用水）组成；农村生活用水指居民生活用水。工业用水指工矿企业在生产过程中用于制造、加工、冷却、空调、净化、洗涤等方面的用水，按新水取用量计，不包括企业内部的重复利用水量。农业用水包括耕地灌溉和林、果、草地灌溉，鱼塘补水及牲畜用水。生态环境补水仅包括人为措施供给的城镇环境用水和部分河湖、湿地补水（河湖湿地补水按耗水量统计），而不包括降水、径流自然满足的水量。

2、对于水资源公报中没有县级行政区供水量数据的，应以省级水资源公报中的地级行政区供水量数据为基础，根据经济社会活动与供水分布情况，合理拆分到县级行政
区。

（1）供水量拆分时可参考水利统计年鉴（年报）中各县域行政区水利工程供水量的比例。

（2）用水量应按用水分项进行拆分。一是可参考水利普查县级行政区间的用水量比例计算；二是可采用生活用水量按常住人口比例计算，农业用水量按灌溉面积比例计算，工业用水量按工业增加值比例计算，生态环境用水量中的城镇环境用水量按城镇常住人口比例计算，生态环境用水量中的河湖补水水量按补水河湖所在县级行政区统计。若按上述比例拆分不能反映实际情况时（如农业种植结构、工业产业结构差异很大），应进行补充调研，调整拆分比例。对于地级行政区内的各行业大用水户，宜先按其所在县级行政区直接统计用水量，然后再将其他用水户的用水量按比例拆分。

3、根据水资源公报、水中长期供求规划、地下水利用与保护规划，分析获取地级行政区套水资源三级区现状年供水量、水资源公报口径用水量。

4、补充调查统计评价单元之间的跨区域供水情况，包括跨区域供水量、水源类型（蓄水、引水、提水、地下水）等。

5、省级行政区水行政主管部门应按附表3、附表4的格式，填报县域单元、地级行政区套水资源三级区的现状年供水量、水资源公报口径用水量。
（五）水环境状况

根据各级水资源公报、相关规划、污染源调查和水质监测数据等，获取地级行政区水功能区水质达标情况、废污水排放量、废污水入河量及主要污染物入河量等水环境状况资料，并结合数据资料情况和评价工作需求拆分到县域单元。

1、水功能区划分情况

（1）以《全国水资源保护规划》规划范围内的 8499 个水功能区为基础，其中国务院批复的全国重要江河湖泊水功能区 4493 个，各省区批复的主要水功能区 4006 个。

（2）省级行政区水行政主管部门需复核全国 8499 个水功能区涉及县级行政区情况，省区可酌情填报新批复的水功能区。省级行政区水行政主管部门应按照附表 2-1 填报地级行政区水功能区划情况。

（3）有条件的地区可将地级行政区范围内的水功能区分解到水功能区套县域边界，分解方法可参考《水功能区区划》《全国水资源保护规划技术大纲》《全国重要江河湖泊水功能区纳污能力核定和分阶段限排总量控制技术大纲》。对资料缺乏地区可只将地级行政区水质不达标的水功能区分解到水功能区套县域。省级行政区水行政主管部门应按照附表 2-2 的格式填报县域单元水功能区划情况。

1对于省级行政区最新批复调整的水功能区，填报时进行标记。
2、水功能区水质状况

（1）本次水功能区水质监测数据尽量采用频次法全指标监测结果（地表水环境质量标准中的常规监测项目），以利于分析水质超标因子；水功能区水质达标评价统一采用 COD 和氨氮双指标评价。

（2）对于缺乏监测资料的地区，可采用近 3 年内的水质监测成果代替；对于无近 3 年内水功能区水质监测资料的地区，可开展补充调查和监测。

（3）省级行政区水行政主管部门应按照附表 2-1 和附表 2-2 的格式，填报地级行政区和（超载区）县域的水功能区水质情况。

3、废污水入河量

本次主要统计分析地级行政区和超载区县域单元的废污水入河量。首先通过区域水资源公报、统计年鉴等资料获取各评价单元废污水排放量，资料缺乏地区可采用近 3 年统计成果和调查成果代替，然后采用入河系数法估算废污水入河量，入河系数可参考水资源综合规划、水资源保护规划等相关成果确定。省级行政区水行政主管部门应按照附表 2-4 的格式，填报超载区的县域水功能区废污水入河量。

三、水资源承载能力核算

根据本技术大纲对水资源承载能力的定义，按照可操作、
可度量、可监测等原则，考虑与最严格水资源管理“三条红线”指标的衔接，选取用水总量指标、地下水开采量指标、水功能区水质达标率控制指标、污染物限排量等作为主要评价指标。

（一）用水总量指标

根据各级政府实行最严格水资源管理制度实施方案或考核办法，获取评价年份县域单元水资源开发利用控制红线指标；对尚未分解到县级行政区的，应结合各县级行政区可供水量和经济社会发展规划等进行分解，并说明分解依据。在此基础上，进行以下处理：

1. 对于指标中包含规划但未生效工程供水量且没有替代水源的，应扣减该工程的配置供水量；对调水工程通水初期或分期逐步生效的供水工程，可根据规划的分期供水指标进行扣减。

2. 对于指标确定时考虑区域经济社会发展现实需求，允许部分地表水挤占或地下水超采的，应扣减地表水挤占量和地下水超采量。

3. 对于指标超出流域水量分配指标的也应扣减。

（二）地下水开采量指标

根据地下水利用与保护规划等相关规划成果，获取省级、地级行政区地下水开采控制量和平原区地下水开采控制量，
并分别分解到地级行政区套水资源三级区、县域单元。对实行最严格水资源管理制度实施方案或考核办法中，明确了地下水开采量控制指标的，应根据现状年平原区与山丘区开采控制量比例进行分解。

1、对于平原区，若现状年地下水开采量大于可开采量，原则上采用地下水可开采量作为地下水开采量指标；若地下水尚有一定开采潜力，原则上采用地下水开采控制量与地下水可开采量二者的较小值作为地下水开采量指标，已明确地下水开采控制指标的，应纳入比较。对于地下水位不宜过高的地区，可采用可开采量作为地下水开采量指标。

2、对于山丘区，考虑到山丘区地下水资源与地表水资源基本是重复的，地下水开采量可视为地表水开发量，不单独对地下水开采量进行评价。

省级行政区水行政主管部门应按附表6的格式，填报县域单元、地级行政区套水资源三级区水量要素评价指标。

（三）水功能区水质达标率控制指标

1、根据各级政府实行最严格水资源管理制度实施方案或考核办法及水功能区批复文件等，获取地级行政区、县域单元范围内水功能区水质达标目标和要求。对于没有确定县域单元范围内水功能区水质达标目标和要求的地区，有条件的地方可将地级行政区范围内的水功能区水质达标目标和要求分解
到县域，资料缺乏地区可只将超载区和严重超载区范围内的水功能区分解到县域。

2、应按照附表 2-1 和附表 2-5 的格式，填报地级行政区水功能区水质达标目标和要求，按照附表 2-2 和附表 2-6 的格式，填报县域单元水功能区水质达标目标和要求。

（四）水功能区污染物入河限排量

1、依据各级政府实行最严格水资源管理制度实施方案或考核办法、《全国水资源保护规划》《全国重要江河湖泊水功能区纳污能力核定及限制排污总量控制方案》中的水功能区污染物限排量成果，确定 2020 年各地级行政区水功能区污染物限排量。省级行政区水行政主管部门应按照附表 2-3 的格式填报地级行政区主要污染物（COD 和氨氮）限排量，成果应与相关规划成果相协调。

2、有条件的地区，可依据《全国水资源保护规划技术大纲》和《全国重要江河湖泊水功能区纳污能力核定和分阶段限排总量控制技术大纲》提出的限排量分解方法，将水功能区套地级行政区的限排量分解到水功能区套县域单元，省级行政区水行政主管部门应按照附表 2-4 的格式填报县域单元主要污染物（COD 和氨氮）限排量。

（五）指标合理性分析

从区域河湖分布状况、水资源禀赋条件、水利工程建
运行情况，经济社会发展及分布情况、水资源开发利用状况，
河湖水质分布情况、供用水分布情况、水污染防治措施分布
情况，行政分区与水资源分区协调情况等方面，进行水资源
开发利用及水污染防控指标的合理性分析。

四、水资源承载负荷核算

（一）用水总量

考虑到用水总量指标对应水平年与现状年来水频率可能
不同，且 2000 年以后新增火（核）电冷却水量按耗水量统计，
因此首先需将现状年水资源公报口径用水量转换为用水总量
控制指标口径的用水量。需转换的用水项主要包括农业灌溉
用水量、火核电直流冷却水用水量以及特殊情况用水量。转
换方法如下：

1、农业灌溉用水量。农业灌溉用水量转换仅对当年来水
较枯或较丰（降水频率不在 37.5%～62.5%范围内）的地区进
行。根据水资源公报、雨量站等降水量资料，计算现状年县
级行政区降水量，并分析其降水丰枯程度（包括距平、降水
频率）。根据降水丰枯程度，将现状年农业灌溉用水量转换到
多年平均用水量。对于近几年降水能够代表平水年或多年平
均状况的区域，可采用近几年农业灌溉用水量（或亩均用水
量）平均值作为多年平均用水量；对于近几年降水不能够代
表丰枯变化的区域，可参考水中长期供求规划基准年不同频
率农业配置水量与多年平均配置水量的比例系数，依据当年的丰枯频率内插获得转换系数进行转换。此外，如果近期农业灌溉水量保持稳定不变或持续下降，以及灌溉用水量与降水丰枯无明显关系的区域，可不进行转换。

2. 火（核）电直流冷却水用水量。应根据直流冷却火（核）电厂的投产年份进行逐一统计与转换。2000 年之后投产（或扩建）且利用江河水作为直流冷却水的火（核）电厂机组取水量，按其耗水量统计用水量。

3. 特殊情况用水量。应说明其转换原因、转换水量。

省级行政区水行政主管部门应按附表 7 的格式，填报县域单元、地级行政区套水资源三级区的现状年用水总量控制指标口径用水量。

（二）地下水开采量

1. 平原区与山丘区地下水开采量

在用水总量控制指标口径用水量基础上，按照现状年地表水与地下水供水比例，核算地下水开采量。在此基础上，按照全国水资源调查评价划定的平原区与山丘区分界线，分析获取地级行政区套水资源三级区以及县域单元现状年用水总量控制指标口径平原区、山丘区地下水开采量。

省级行政区水行政主管部门应按附表 7 的格式，填报县域单元、地级行政区套水资源三级区的现状年用水总量控制
指标口径平原区与山丘区地下水开采量。

2、平原区地下水超采区复核

根据最近的地下水超采区评价成果及近年来地下水开发利用以及区域地下水水位变化情况，对平原区地下水超采区进行复核，包括浅层地下水超采区和深层承压水开采区分布范围和面积。

3、平原区地下水超采量核定

根据平原区超采区现状年地下水开采量和地下水可开采量，核定平原区地下水超采量，包括浅层地下水超采量和深层承压水开采量，并分析超采区现状年浅层地下水超采系数。

省级行政区水行政主管部门应按附表5的格式，填报县域单元、地级行政区套水资源三级区的地下水超采区状况。

4、山丘区地下水过度开采分析

对于山丘区现状年地下水开采主要用于高耗水工业或农业灌溉的区域，若有充分理由认为该区域已发生明显的河湖生态环境用水挤占，如河川径流大幅衰减、地下水位大量回落、泉域萎缩或消亡等，或在已实施禁限采的超采区内开采地下水的，可考虑在承载状况评价中单独评价为超载或严重超载，并提出相应的监测、预警与管控措施。

（三）水质要素承载负荷

根据地级行政区和超载区县域水功能区水质达标情况、
污染物入河量等，核算各评价单元范围内的水功能区水质达标率和污染物入河量。

1、地级行政区

（1）水功能区水质达标率

对附表2-1中的水质现状进行评价，按照地级行政区水功能区水质达标率为地区范围内达标水功能区个数与其水功能区总数的比值，分别计算地级行政区水功能区水质达标率，省级行政区水行政主管部门应按照表2-5的格式填报。

（2）主要污染物入河量

收集分析地级行政区内点源污染物入河量，相关数据可通过水资源公报、统计年鉴、水资源保护规划等资料获取，资料缺乏地区可采用近3年内统计成果代替，对无近3年内统计结果的地区，可开展补充调查。对于面源污染调查较为完善的地区，也可酌情考虑面源污染物入河量。对于无主要污染物入河量调查和相关统计数据的，可采用以下3种方法进行估算:

1）开展水功能区入河排污口补充监测与入河量估算；
2）用流域入河排污口普查工作年的数据换算；
3）根据各行政区废污水排放量，采用入河系数法估算污染物入河量，入河系数可参考水资源综合规划、水资源保护规划等相关成果确定。
省级行政区水行政主管部门应按照附表 2-3 的格式填报
地级行政区现状年主要污染物入河量。主要污染物入河量应
与现状排污口调查数据相协调。

2、县域单元

（1）县域水功能区水质达标率

按照水功能区水质达标率为县域范围内达标水功能区个
数与其水功能区总数的比值，计算各县域（或超载区的县域）
水功能区水质达标率，省级行政区水行政主管部门应按照表
2-6 的格式填报各个县域单元水功能区水质达标率。

（2）主要污染物入河量

主要污染物入河量可采用以下方法确定：

1）统计超载和严重超载的地级行政区的县域废污水入河
量与主要点源污染物入河量，相关数据可通过水资源公报、
统计年鉴、水资源保护规划等资料获取，资料缺乏地区可采
用近3年统计成果代替。对无近3年统计结果的地区，可开
展补充调查。对于面源污染调查较为完善的地区，也可酌情
考虑面源污染物入河量。

2）对于无主要污染物入河量调查和统计数据的，可估算
后再分解到县域内水功能区。

按照附表 2-4 的格式填报县域单元现状年主要污染物入
河量，主要污染物入河量应与现状排污口调查数据相协调。
五、水资源承载状况评价

本次水资源承载能力评价采用实物量指标进行单因素评价，评价方法为对照各实物量指标度量标准直接判断其承载状况。水资源承载状况评价标准见表5-1。

（一）水量要素评价

根据现状年用水总量、地下水开采量等，进行水量要素评价，划分严重超载、超载、临界状态、不超载的区域范围。判别标准如下：

1、单指标评价

对于用水总量，$W \geq 1.2*W_0$ 为严重超载，$W_0 \leq W < 1.2*W_0$ 为超载，$0.9*W_0 \leq W < W_0$ 为临界状态，$W < 0.9*W_0$ 为不超载。

对地下水开发利用，$G \geq 1.2*G_0$ 或超采区浅层地下水超采系数 ≥ 0.3 或存在深层承压水开采量或存在山丘区地下水过度开采为严重超载，$G_0 \leq G < 1.2*G_0$ 或超采区浅层地下水超采系数介于 $(0, 0.3]$ 或存在山丘区地下水过度开采为超载，$0.9*G_0 \leq G < G_0$ 为临界状态，$G < 0.9*G_0$ 为不超载。

2、水量要素评价

严重超载：任一评价指标为严重超载；（任一指标是指最不利的评价指标：即一个指标为超载、另一个指标为严重超载则应判定为“严重超载”；若一个指标为超载、另一个指标为临界超载，则应判定为“超载”，下同）。
表 5-1 水资源承载状况分析评价标准

<table>
<thead>
<tr>
<th>要素</th>
<th>评价指标</th>
<th>承载能力基线</th>
<th>承载状况评价</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>严重超载</td>
<td>超载</td>
</tr>
<tr>
<td>水量</td>
<td>用水总量 W</td>
<td>W ≥ 1.2 * W₀</td>
<td>W₀ ≤ W < 1.2 * W₀</td>
</tr>
<tr>
<td></td>
<td>地下水开采量 G</td>
<td>G ≥ 1.2 * G₀或超采区浅层地下水超采系数 > 0.3或存在深层承压水开采</td>
<td>G₀ ≤ G < 1.2 * G₀或超采区浅层地下水超采系数介于 (0, 0.3]或存在山丘区地下水过度开采</td>
</tr>
<tr>
<td>水质</td>
<td>水功能区水质达标率 Q</td>
<td>Q ≤ 0.4 * Q₀</td>
<td>0.4 * Q₀ < Q ≤ 0.6 * Q₀</td>
</tr>
<tr>
<td></td>
<td>污染物入河量 P</td>
<td>P ≥ 3 * P₀</td>
<td>1.2 * P₀ ≤ P < 3 * P₀</td>
</tr>
</tbody>
</table>
超载：任一评价指标为超载；
临界状态：任一评价指标为临界状态；
不超载：任一评价指标均不超载。

（二）水质要素评价

根据水质要素评价标准，对地级行政区和县域进行水质要素评价，划定严重超载、超载、临界状态、不超载。

1、地级行政区评价

根据现状年水功能区水质达标率、污染物入河量等，进行水质要素评价，判别标准如下：

将地级行政区水功能区水质达标率 Q 与水功能区水质达标率控制指标 Q₀，污染物入河量 P 与污染物限排量 P₀ 进行比较，选择 COD、氨氮入河污染物中 P/P₀ 的较大值。

Q ≤ 0.4*Q₀ 或 P ≥ 3*P₀ 为严重超载；
0.4*Q₀ < Q ≤ 0.6*Q₀ 或 1.2P₀ ≤ P < 3*P₀ 为超载；
0.6*Q₀ < Q ≤ 0.8*Q₀ 或 1.1*P₀ ≤ P < 1.2P₀ 为临界状态；
Q > 0.8*Q₀ 且 P < 1.1*P₀ 为不超载。

按照附表 2-5 的格式填报各地级行政区水质要素评价等级成果。

2、县域评价

（1）有条件的地区可将地级行政区范围内跨县域水功能区、水功能区水质达标要求、入河污染物限排量分解到县域。
单元，并根据“水功能区限制纳污红线”考核目标要求，确定各县域单元水功能区水质达标率控制指标，根据县域各水功能区水质达标情况，评价各县域水功能区水质达标率。

（2）对于水功能区划分分解有困难的地区，可仅对超载和严重超载地级行政区范围内的水功能区分解到县域，然后根据各县域水功能区水质达标状况、废水入河量、排污口分布情况、废水处理率、人口、GDP 等指标，进行县域水环境承载状况分析。

1）如果某一水功能区全部在单个县域内，则该水功能区达标情况直接归到其所属县域内。

2）如果某一水功能区跨过几个县域单元，则需分别按各县域水质监测数据评价该水功能区各所属部分的水质达标情况。如果各县域缺乏水质监测数据，则各县域需选择合适监测断面，进行补充监测后评价。

（3）县域水资源承载能力水质要素评价标准为：

将各县域（或超载区的县域）水功能区水质达标率 Q 与水功能区水质达标要求 Q_0 进行比较，按以下比较结果划分评价等级。

$$ Q \leq 0.4Q_0 \text{ 为严重超载}; $$

$$ 0.4Q_0 < Q \leq 0.6Q_0 \text{ 为超载}; $$

$$ 0.6Q_0 < Q \leq 0.8Q_0 \text{ 为临界状态}; $$
Q＞0.8*Q₀不超载。

结合各县域水质现状、废污水排放量、污水处理率等因素对评价结果进行合理性分析。

按照附表2-6填报县域单元水质要素评价成果。

（三）综合评价

根据水量、水质要素评价结果，评价水资源承载状况，判别标准如下：

1、严重超载：水量、水质要素任一要素为严重超载；
2、超载：水量、水质要素任一要素为超载；
3、临界状态：水量、水质要素任一要素为临界状态；
4、不超载：水量、水质要素均不超载。

按照上述评价方法，逐一分析评价县域单元的水资源承载状况，并结合区域水资源条件、开发利用状况、经济社会发展现状与趋势，分析评价结果的合理性。根据评价结果，分别绘制省级行政区县域水资源承载状况图。

（四）河流水系水资源承载能力复核分析

为了解河流水系和控制断面以上河段的水资源承载能力、水资源及其污染负荷、超载状况及成因，并有针对性地提出管控措施，需要对水资源开发利用程度较高和水污染问题较为突出河流的水资源开发利用和水环境污染防治状况进行复核分析，井按照水量、水质要素评价方法提出以河流水系为
单元的承载状况评价成果。

1、水资源及其开发利用评价

（1）根据第二次水资源调查评价等成果，分析计算河流水系及控制断面以上河段的地表水资源量、地下水资源量和水资源总量。

（2）地表水可利用量是以流域为单元，在保护生态环境和水资源可持续利用的前提下，在可预见的未来，通过经济合理、技术可行的措施，在当地地表水资源量中可供河道外开发利用的最大水量（按不重复水量计）。不同地区、不同类型河流，河道内生态环境用水量、汛期难以利用下泄的洪水量及地表水资源可利用量占地表水资源的比例可参考表5-2。

表 5-2 不同类型河流地表水资源可利用率

<table>
<thead>
<tr>
<th>类型</th>
<th>河道内基本生态用水量比例(%)</th>
<th>汛期难以利用水量比例(%)</th>
<th>地表水资源可利用量比例(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>大江大河</td>
<td>北方 10～15</td>
<td>25～40</td>
<td>45～60</td>
</tr>
<tr>
<td></td>
<td>南方 20～30</td>
<td>50～60</td>
<td>20～30</td>
</tr>
<tr>
<td>独流入海河流</td>
<td>北方 10～15</td>
<td>40～45</td>
<td>35～50</td>
</tr>
<tr>
<td></td>
<td>南方 20～30</td>
<td>45～50</td>
<td>25～30</td>
</tr>
<tr>
<td>内陆河</td>
<td>西北干旱 40～50</td>
<td></td>
<td>50～60</td>
</tr>
<tr>
<td></td>
<td>青藏高原 >80</td>
<td></td>
<td><20</td>
</tr>
<tr>
<td>中小河流（支流）</td>
<td>北方 10～15</td>
<td>40～60</td>
<td>30～50</td>
</tr>
<tr>
<td></td>
<td>南方 65～75</td>
<td></td>
<td>25～35</td>
</tr>
</tbody>
</table>

（3）可利用总量由地表水资源可利用量与地下水资源可
开采量相加，再扣除两者之间的重复量求得。水资源可利用率与区域的水资源条件、紧缺状况、承载能力以及水资源开发利用的调控能力等因素有关。不同区域水资源可利用率可参考表 5-3。

表 5-3 不同区域水资源可利用率

<table>
<thead>
<tr>
<th>区域</th>
<th>水资源紧缺调控能力强</th>
<th>水资源较紧缺调控能力较强</th>
<th>水资源不紧缺调控能力差</th>
</tr>
</thead>
<tbody>
<tr>
<td>北方</td>
<td>50~60</td>
<td>40 左右</td>
<td>20~30</td>
</tr>
<tr>
<td>南方</td>
<td>40 左右</td>
<td>20~30</td>
<td>15~20</td>
</tr>
<tr>
<td>西北内陆河</td>
<td>50~55</td>
<td>40 左右</td>
<td>15~20</td>
</tr>
</tbody>
</table>

（4）根据流域和各级行政区水资源公报中的 2015 年供用水量成果，拆分出河流水系（及控制断面以上河段）套省级行政区评价年份的年供用水量，并根据当年降水情况及农业用水状况，折算得出现状水平年多年平均供用水量。多年平均供用水量包括本地地表水供水量、其他水源供水量和调入本河流水系的水量。当地地表水供水量是指仅供本河流水系利用的水量，不包括外流域调入的水量和调出本河流水系的水量。

（5）根据河流水系现状地表水和地下水开发利用的情况，分析现状水资源开发利用程度。水资源开发利用程度为当地地表水供水量、地下水开采量及调出本河流水系水量之和与本河流水系水资源总量的比值。
2、耗损量与挤占量

（1）耗损量与耗损率

地表水耗损量是指水资源在供水、用水、排水至回水的过程中消耗损失的水量，包括供水输水损失、用水消耗、排水及污水处理的耗损、用水造成的汇流损失和不能回归到地表水体的水量以及调出本河流水系的水量。其与气候条件、降水状况、用水结构与方式、供水水源组成、节水水平等多种因素有关。

河水系总耗损量包括本河水系的地表水耗损量、地下水耗损量和调出本河水系的水量。其中，调出本河水系的水量可单独分析计算；本河水系的地表水和地下水耗损量直接分析计算的难度大，可在综合分析和区域平衡协调的基础上，合理选定地表水耗损率、地下水耗损率，分别进行计算。

（2）经济社会挤占生态环境用水量

将本河水系（及控制断面以上河段）地表水耗损量加上调出本河水系的水量与地表水可利用量比较，超出的水量可以认为是该河水系（及控制断面以上河段）经济社会挤占的生态环境用水量。

有些地区地表水与地下水转换关系复杂，也可将河流水系总耗损量（当地地表水耗损量、地下水耗损量及调出本河
流水系水量之和)与水资源可利用总量比较,其超出的水量为挤占生态环境的总水量,再根据地下水超采状况的分析,计算河道内生态用水的挤占量。

3、水环境状况评价

统计现状水质评价各河流水系的水功能区数量、水功能区水质达标个数。将各河流水系水功能区水质达标个数与其水功能区总数进行比较,计算出各河流水系的水功能区水质达标率。

统计各河流水系所有水功能区的 COD 和氨氮现状入河量、限排量,根据各水功能区统计结果,合计出各河流水系 COD 和氨氮现状入河总量、限排总量。通过计算 COD 和氨氮现状入河总量与其限排总量的比值,得出 COD 和氨氮的超排率,根据超排率分析各河流水系主要入河污染物超载状况。

4、河流水系承载状况评价

以区域水量、水质要素评价相关资料为基础,以河流为单元,参照水量、水质要素评价方法,对重点河流水系承载状况进行评价。

5、河流水系及控制断面以上河段开发利用情况和水环境污染状况复核工作由流域机构负责,流域机构会同省级行政区按附表 8 和附表 2-7 格式填报。
六、超载成因分析

分别从区域水资源禀赋条件、经济社会发展状况、水资源开发利用情况、水环境污染情况、水生态损害情况以及水资源管理制度等方面，进行水资源承载状况成因分析。

（一）水资源禀赋条件

主要分析区域水资源自然条件及其时空分布特征，可采用水资源量、可利用量、人均水资源量、亩均耕地水资源量等进行分析，并与其他地区进行横向比较，衡量区域水资源禀赋状况。

（二）经济社会发展状况

主要分区域经济社会发展状况、规模及其对水资源开发利用、污染物排放等的影响，可采用区域人口、城镇化水平、工业化程度、GDP、灌溉面积、用水规模等分析区域经济社会发展对水资源的压力。

（三）水资源开发利用情况

采用水资源控制与调配能力、外流域调水、可供水量与供水能力等分析区域水资源开发控制与调配能力，采用不同行业用水量、用水比重及用水效率、生态环境用水挤占、地下水资源采等分析区域经济社会发展方式和用水水平对水资源开发利用状况的影响。
（四）水环境污染状况情况

主要分析经济社会活动对水环境水生态的压力状况，可采用废污水排放情况、处理情况、回用情况和水功能区水质状况、河湖上下游或左右岸的水质保护情况等分析水环境污染与水资源保护情况。

（五）水生态损害情况

主要分析经济社会活动对水生态造成的损害情况，可采用地下水超采区范围、面积、超采程度和河湖湿地萎缩断流、生态环境用水挤占等分析水生态损害情况。

（六）水资源管理制度

分析最严格水资源管理制度、水资源节约管理、地下水开采管理、水价水市场机制等政策制度设置和执行情况，分析其对区域水资源供需状况、开发利用等的影响。

根据区域实际情况，综合采用单因素、双因素组合、多因素叠加等方法，分析区域经济社会发展布局和结构与水资源承载能力的适应性，研究县域单元范围内水资源与经济社会、生态环境等要素的平衡关系，分析超载成因及存在问题。在此基础上，根据评价区域水资源情势演变、水资源开发利用态势变化、水环境状况演变趋势，分析水资源承载能力及承载状况的演变态势。
七、调控措施建议

在上述水资源承载状况成因分析的基础上，针对不同超载或临界超载地区的超载特征和超载成因，相适应、相协调，研究提出水资源调控措施建议。

（一）全面推进节水型社会建设，大力提高水资源利用效率。对比分析区域内不同行业的用水水平和节水潜力，按照提高区域水资源承载能力的要求，提出区域节水重点方向、工程项目和政策措施建议。

（二）合理控制经济社会发展布局、规模和产业结构，减少经济社会用水与污染负荷。针对区域产业结构和规模与水资源承载能力不相适应的地区，分析经济社会主要超载负荷和调整可能，研究提出合理的经济发展布局、规模和产业结构建议，制定退减高耗水作物种植面积、淘汰高耗水落后产能等调控方案，提出水资源开发利用的限制性措施。临界。针对水资源承载能力有潜力的地区，根据经济社会，提出控制性对策。

（三）统筹调配多种水源，合理提高水资源承载能力。分析区域供水结构、非常规水源利用潜力、外调水的需要与可能，在保障合理生态用水的前提下，按照充分利用本地地表水、适度开采地下水、加大非常规水利用、提高水循环利用水平、合理增加外调水的原则，提出优化区域供水结构、
提高水资源承载能力的措施建议。

（四）强化水资源保护，减少入河污染物排放。分析区域内不达标水功能区的污染物超载情况和主要污染源，按照点源、面源、内源统筹治理的原则，提出强化源口污染控制和治理、加大污水收集处理力度、开展河湖水域污染综合整治等措施建议。

（五）推进水生态修复与保护，恢复河湖生态功能。分析区域河湖生态环境用水亏缺情况和地下水超采情况、经济社会用水侵占情况，提出水源涵养与治理、河岸带和湖泊湿地保护与修复、保障河湖生态用水、逐步压采地下水等措施建议。

（六）健全水资源管理制度，建立水资源承载能力监测预警机制。针对不同超载地区特点，统筹水资源开发利用节约保护全过程，提出完善水资源管理制度、加强监控能力建设、建立水资源承载能力监测预警机制等措施建议。

八、承载能力监测预警机制建设

与国家水资源监控系统和水资源管理信息平台相结合，提出水资源承载能力评价和监测预警的总体构想，近期以统计数据和信息报表为主，远期充分利用国家水资源监控能力等信息平台，为发布监测预警信息、逐步建立长效机制奠定基础。
省级行政区水行政主管部门应根据本省区水资源监测站网建设情况、覆盖范围、监测情况和已有监测资料，结合水资源承载能力评价指标，细化监测指标、监测单元和监测方案，落实监测措施；在此基础上，结合本省区经济社会发展和水资源开发利用情况，根据水资源承载能力和承载状况评价结果，提出预警阈值和预警信息发布制度，逐步建立水资源承载能力监测预警机制。
附录 1 重点河流水系名录

一、河流水系选定

开展水资源开发利用情况复核分析的河流包括水资源综合规划、水中长期供求规划提出的存在地表水生态环境用水被挤占的河流，已经开展水量分配工作的部分河流，以及开发利用程度较高的河流，具体名录见表 1。各流域机构可根据实际情况，在表 1 基础上增加河流水系。

表 1 需要复核分析的河流名录

<table>
<thead>
<tr>
<th>一级区</th>
<th>河流水系</th>
</tr>
</thead>
<tbody>
<tr>
<td>松花江区</td>
<td>嫩江、二松、诺敏河、雅鲁河、绰尔河、牡丹江、拉林河、霍林河</td>
</tr>
<tr>
<td>辽河区</td>
<td>西辽河、东辽河、柳河、辽河干流、浑河、大子河、大凌河</td>
</tr>
<tr>
<td>海河区</td>
<td>滦河、海河北系、海河南系、徒骇马颊河水系、永定河、潮白河、大港、卫河、大清河</td>
</tr>
<tr>
<td>黄河区</td>
<td>黄河干流、渭河（含泾河）、汾河、潼水、大河、无定河、伊洛河、沁河</td>
</tr>
<tr>
<td>淮河区</td>
<td>淮河干流（洪泽湖以上）、洪汝河、沙颍河、涡河、史灌河、沂河、沭河</td>
</tr>
<tr>
<td>西北诸河区</td>
<td>黑河、石羊河、疏勒河、塔里木河、天山北麓、吐哈盆地</td>
</tr>
<tr>
<td>长江区</td>
<td>汉江、岷江、沱江、嘉陵江</td>
</tr>
<tr>
<td>东南诸河区</td>
<td>钱塘江、闽江</td>
</tr>
<tr>
<td>珠江区</td>
<td>东江、韩江</td>
</tr>
</tbody>
</table>

（二）控制断面的选择

每条河流应选择河流出口断面、省界断面、重要支流汇入口断面和重要水利工程等控制断面，进行河流水系和河段开发利用程度分析。
附录 2 县级行政区水资源量拆分方法

一、县级行政区降水量

可在省级行政区 1956-2000 年多年平均降水量等值线图上，量算出各县级行政区的降水量。如各县级行政区降水量之和与所属地级行政区第二次评价降水量不相等时，应对该地市所辖县级行政区的量算值进行平差处理，以获得县级行政区多年平均降水量。

二、县级行政区地表水资源量

可在省级行政区 1956-2000 年多年平均径流深等值线图上，量算出各县级行政区的地表水资源量。如各县级行政区地表水资源量之和与所属地级行政区第二次评价地表水资源量不相等时，应对该地市所辖县级行政区的量算值进行平差处理，以获得县级行政区多年平均地表水资源量。

三、县级行政区地下水资源量

县级行政区地下水资源量为山丘区地下水资源量与平原区地下水资源量之和，再扣除平原区与山丘区之间的地下水重复计算量。地市所辖县级行政区地下水资源量之和应与二次评价地市成果相等。

（一）山丘区地下水资源量

可在省级行政区 1956-2000 年多年平均降水量等值线图
上，先量算出各县级行政区山丘区降水量，获得各县级行政区山丘区降水量占所属地市山丘区降水量的比例，然后根据该比例计算县级行政区山丘区地下水资源量。

（二）平原区地下水资源量

可在省级行政区1980-2000年平原区多年平均地下水模数分布图上，先量算出各县级行政区平原区地下水资源量（地下水模数与面积之乘积）。如各县级行政区平原区地下水资源量之和与所属地级行政区第二次评价的平原区地下水资源量不相等，应对该地市所辖县级行政区的量算值进行平差处理，以获得县级行政区平原区地下水资源量。

（三）平原区与山丘区地下水重复计算量

可采用各县级行政区山丘区降水量占所属地级行政区的比例，乘以该地级行政区的平原区与山丘区地下水重复计算量（为平原区山前侧向补给量与山丘区河川基流量形成的地表水体补给量之和）获得。

四、县级行政区水资源总量

县级行政区水资源总量为地表水资源量与“地下水与地表水不重复量”之和。

地下水与地表水不重复量：对于有平原区的地级行政区，可在省级行政区1956-2000年多年平均降水量等值线图上，先量算出各县级行政区平原区的降水量；然后计算各县级行
政区平原区降水入渗补给量（平原区降水量与降水入渗补给系数之乘积）占所属地级行政区的比例，乘以该地级行政区的地下水与地表水不重复量获得。若缺乏各县级行政区降水入渗补给系数，可近似采用各县级行政区平原区降水量占所属地市的比例计算。对于无平原区且有地下水与地表水不重复量的地级行政区，可采用各县级行政区地表水资源量占所属地级行政区的比例，乘以该地级行政区的地下水与地表水不重复量获得。

地市所辖县级行政区水资源总量之和应与评价的地市成果相等。
附录 3 水质要素评价有关技术问题处理方法

一、左右岸跨县界水功能区划分方法

对于大江大河已划分左右岸水功能区的按照已划分情况处理；对于中小河流没有划分左右岸水功能区的，水功能区为左右岸两县共有，纳污能力和限制排污总量两县平均分配。

二、达标水功能区中存在其他超标因子

为了全面分析水功能区入河污染物超标情况，本次水功能区水质监测数据尽量采用频次法全指标监测结果。鉴于最严格水资源管理制度考核办法纳污红线考核指标为 COD 和氨氮，因此，水功能区水质达标评价采用 COD 和氨氮双指标评价。如 COD 和氨氮达标的水功能区中有存在其他超标因子，建议在超载原因分析和监测预警信息中对其他超标因子进行分析，并提出相关调控措施。

三、县域水功能区水质控制目标确定

对于已经划定县域水功能区水质达标考核要求的，水功能区水质控制目标采用已划定成果；对于县域没有划分水功能区水质控制目标的，依据各流域、省（自治区、直辖市）、地级行政区确定的各水平年水功能区水质达标率目标进行协调，并根据水功能区的水体功能属性、水功能区现状达标情况、水功能区污染程度，分析县域水功能区达标需求，确定
各县域水功能区水质达标率分解目标。

四、跨县湖库型水功能区的水质达标率考核目标分解

以白洋淀河北湿地保护区为例，该水功能区地跨安新、雄县、任丘和容城四个县域，四个县的水功能区水质达标率考核问题涉及到了初始排污权公平分配问题，可参考《全国重要江河湖泊水功能区纳污能力核定和分阶段限排总量控制技术大纲》提出的目标分解方法，根据水功能区污染情况，考核标准要兼顾公平、经济和效率，具体问题具体分析，建议由流域机构、省区、地方协商确定 4 个县的考核目标分解。

五、水功能区在 A、B 县，不涉及 C 县，但 C 县废水污水排入 A、B 县的水功能区内，三个县的考核目标确定

水功能区监测断面设在 A、B 县，那么水功能区达标目标要求只考核 A、B 县，如果水功能区限排量可分解到 A、B、C 三县，则限排量的考核要求可按照 A、B、C 三个县的排污贡献率进行考核。如果 A、B 县水质评价结果属于超载或严重超载，那么在分析超载原因和监测预警时要提出 C 县的排污贡献率和相关治理措施。

六、跨县界河流上下游水功能区考核目标分解方法

对于跨县界河流，上游和下游分属于不同县的，如果上下游都划定水功能区的，则按照水功能区水质达标目标要求分别考核；对于上游未划分水功能区，其污染物排至下游水
功能区的情况，水功能区水质达标考核目标归属于下游县，在分析超载原因和监测预警时要分析上游县的排污贡献率。

七、对《全国水资源保护规划》等已有限排成果复核

对于排污口位置原来在 A 水功能区，现已调至 B 水功能区，且两个水功能区的现状污染物入河量发生较大变化的情况，要依据“谁排污谁治理”的原则，复核 A 和 B 水功能区的限排量。
附表 1 _____省（自治区、直辖市）现状年经济社会发展指标

<table>
<thead>
<tr>
<th>分区</th>
<th>常住人口（万人）</th>
<th>GDP (亿元)</th>
<th>工业增加值（亿元）</th>
<th>耕地面积（万亩）</th>
<th>有效灌溉面积（万亩）</th>
<th>耕地实际灌溉面积（万亩）</th>
<th>面积（km²）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>城镇</td>
<td>农村</td>
<td>合计</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>地市</td>
<td>水资源三级区</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>......</td>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>......</td>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>县域单元</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>全省合计</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：1、常住人口指在统计范围内的城镇或乡村常住半年以上（或在本地居住不满半年，但离开户口登记地半年以上）的人口。城镇人口指居住在城镇范围内的全部常住人口，乡村人口指居住在城镇范围以外的全部人口。（常住人口不能采用户籍人口，城镇人口不能采用非农业人口，乡村人口不能采用农业人口）。
2、地区生产总值（GDP）指按市场价格计算的统计范围内所有常住单位在一定时期内生产活动的最终成果，为所有常住单位的增加值之和。填写当年价数值。
3、工业增加值是指统计范围内工业行业在一定时期内以货币表现的工业生产活动的最终成果，是企业生产过程中新增加的价值。填写当年价数值。
4、耕地指种植农作物的土地，包括熟地，新开发、复垦、整理地，休闲地（含轮歇地、轮作地）；以种植农作物（含蔬菜）为主，间有零星果树、桑树或其他树木的土地；平均每年能保证收获一季的已垦滩地和海涂。包括临时种植药材、草皮、花卉、苗木等的耕地，以及其他临时改变用途的耕地。
5、灌溉面积指具有一定的水源，地块比较平整，灌溉工程或设备已经配套，在一般年景下能够进行正常灌溉的面积。
附表 2 ______省（自治区、直辖市）多年平均水资源量

<table>
<thead>
<tr>
<th>分区</th>
<th>计算面积（km²）</th>
<th>降水量（mm）</th>
<th>地表水资源量（万m³）</th>
<th>地下水资源量（万m³）</th>
<th>地下水与地表水资源不重复量（万m³）</th>
<th>水资源总量（万m³）</th>
</tr>
</thead>
<tbody>
<tr>
<td>地市</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水资源三级区</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>县域单元</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>全省合计</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
附表 3 ____省（自治区、直辖市）现状年实际供水量

<table>
<thead>
<tr>
<th>分区</th>
<th>地表水源供水量（(\text{万} \cdot \text{m}^3))</th>
<th>地下水源供水量（(\text{万} \cdot \text{m}^3))</th>
<th>其他水源供水量（(\text{万} \cdot \text{m}^3))</th>
<th>总供水量（(\text{万} \cdot \text{m}^3))</th>
<th>海水直接利用量（(\text{万} \cdot \text{m}^3))</th>
<th>跨区域供水量</th>
<th>供入水量（(\text{万} \cdot \text{m}^3))</th>
<th>供出水量（(\text{万} \cdot \text{m}^3))</th>
<th>供出水源类型</th>
</tr>
</thead>
<tbody>
<tr>
<td>地市</td>
<td>蓄水</td>
<td>引水</td>
<td>提水</td>
<td>跨流域调水</td>
<td>调入量</td>
<td>地下水</td>
<td>深层承压水</td>
<td>非工程供水</td>
<td>小计</td>
</tr>
<tr>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td>调水量</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>小计</td>
</tr>
<tr>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>小计</td>
</tr>
<tr>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>小计</td>
</tr>
<tr>
<td>县域单元</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>小计</td>
</tr>
<tr>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>小计</td>
</tr>
<tr>
<td>全省合计</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>小计</td>
</tr>
</tbody>
</table>

注： 1. 跨流域调水指跨水资源一级区调水。
2. 跨区域供水量为补充信息，不含“地表水源供水量”中的“跨流域调水”。应以地市套水水资源三级区或县域单元为范围，分别填写各分区间间的跨区域供水量。“供出、供入水量”中，供出为“正”，供入为“负”，同时存在供出、供入的分区填写其差值。“供出水源类型”仅在供出分区中填写，其中，蓄水工程供水填写“蓄水”，自流引水工程供水填写“引水”，提水工程供水填写“提水”，地下水井工程供水填写“地下水”。应附文字说明，具体说明供入水量的源头区及水源、供出水量的水源及受水区。
附表 4 ____省（自治区、直辖市）现状年水资源公报口径用水量

<table>
<thead>
<tr>
<th>分区</th>
<th>农业用水量（万 m³）</th>
<th>工业用水量（万 m³）</th>
<th>生活用水量（万 m³）</th>
<th>生态环境补水量（万 m³）</th>
<th>总用水量（万 m³）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>农业灌溉</td>
<td>渔塘补水</td>
<td>畜禽用水</td>
<td>小计</td>
<td>火（核）电</td>
</tr>
<tr>
<td>地市</td>
<td>水资源三级区</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>......</td>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>......</td>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>县域单元</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>全省合计</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
附表 5 ____省（自治区、直辖市）地下水超采区状况统计

<table>
<thead>
<tr>
<th>分区</th>
<th>超采区范围</th>
<th>超采区面积（km²）</th>
<th>超采区浅层地下水可开采量（万 m³）</th>
<th>超采区现状开采量（万 m³）</th>
<th>浅层地下水</th>
<th>深层承压水</th>
<th>超采区浅层地下水超采系数</th>
<th>超采区浅层地下水超采量（万 m³）</th>
<th>超采量（万 m³）</th>
</tr>
</thead>
<tbody>
<tr>
<td>地市</td>
<td>水资源三级区</td>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>......</td>
</tr>
<tr>
<td>......</td>
</tr>
<tr>
<td>县域单元</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>全省合计</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：超采量=深层承压水开采量+超采区浅层地下水超采量。
附表 6 ____省（自治区、直辖市）水资源承载能力指标

<table>
<thead>
<tr>
<th>行政区名称</th>
<th>用水总量指标</th>
<th>地下水开采量指标（万 m³）</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>用水总量控制指标（万 m³）</td>
<td>折减量及折减原因</td>
<td>采用值（万 m³）</td>
</tr>
<tr>
<td></td>
<td>县级行政区 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>县级行政区 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>……</td>
<td></td>
<td></td>
</tr>
<tr>
<td>地级行政区 2</td>
<td>……</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>……</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>水资源三级区</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>……</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>……</td>
<td></td>
<td></td>
</tr>
<tr>
<td>全省合计</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：
1. 用水总量指标应在各级人民政府实行最严格水资源管理制度实施方案（或考核办法）明确的 2015 年用水总量控制指标基础上，进行以下处理：
 ① 对于指标中包含规划但未生效工程供水量的，应扣减该工程的配置供水量；
 ② 对于指标中包含大规模外流域调水量的，应视情况扣减部分外调水量；
 ③ 对于指标确定时考虑区域经济社会发展现实需求，允许部分地表水挤占或地下水超采的，应扣减地表水挤占量和地下水超采量。
2. 对各级人民政府实行最严格水资源管理制度实施方案（或考核办法）中明确了地下水开采量控制指标的，应填报该指标。

49
附表 7 ____省（自治区、直辖市）现状年用水总量控制指标口径用水量

<table>
<thead>
<tr>
<th>分区</th>
<th>现状年丰枯状况</th>
<th>用水折算量（万 m³）</th>
<th>用水总量控制指标口径用水量（万 m³）</th>
<th>用水总量控制指标口径地下水开采量（万 m³）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>年降水量 (mm)</td>
<td>距平 (%)</td>
<td>降水频率 (%)</td>
<td>农业灌溉</td>
</tr>
<tr>
<td>地市</td>
<td>水资源三级区</td>
<td>......</td>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>县域单元</td>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>全省合计</td>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
</tr>
</tbody>
</table>

注：
1. “用水折算量” 中，转换为用水总量控制指标口径时减小为 “正”，增大为 “负”。
2. 农业灌溉折算量可按其公报口径的地表水与地下水用量比例，拆分到水源分类中。
附表 8 流域河流水系及节点的水资源开发利用情况

<table>
<thead>
<tr>
<th>分区</th>
<th>水资源量</th>
<th>供水量</th>
<th>跨流域调出水量</th>
<th>水资源开发利用率</th>
<th>耗损量</th>
<th>总耗损量</th>
<th>备注 1</th>
<th>备注 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>河流名称</td>
<td>节点名称</td>
<td>所在省区</td>
<td>地表水资源量</td>
<td>地表水资源总量</td>
<td>实际年供水量</td>
<td>折算多年平均用水量</td>
<td>地表水供水量</td>
<td>跨流域调入水量</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
</tr>
<tr>
<td>河流 1</td>
<td>节点 1</td>
<td>省区 1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>河流 1</td>
<td>节点 1</td>
<td>省区 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>河流 1</td>
<td>节点 1</td>
<td>小计</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>河流 1</td>
<td></td>
<td>合计</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
附表 2-1 （自治区、直辖市）地级行政分区内水功能区划情况及水质达标评价表（2015 年）（试点 2014 年）

<table>
<thead>
<tr>
<th>水资源</th>
<th>水资源</th>
<th>水资源</th>
<th>河流</th>
<th>省级行政区</th>
<th>地级行政区</th>
<th>水功能区</th>
<th>代表断面</th>
<th>是否省界</th>
<th>现状水质</th>
<th>2020 年是否要求达标</th>
<th>COD 和氨氮达标评价</th>
<th>全指标监测结果</th>
<th>主要超标因子及倍数</th>
<th>水功能区最新批复调整的水功能区，填报时进行标记。</th>
</tr>
</thead>
<tbody>
<tr>
<td>一级区</td>
<td>二级区</td>
<td>三级区</td>
<td>河流名称</td>
<td>东经</td>
<td>北纬</td>
<td>河长</td>
<td>水质目标</td>
<td>东经</td>
<td>北纬</td>
<td>东经</td>
<td>北纬</td>
<td>东经</td>
<td>北纬</td>
<td>主要超标因子及倍数</td>
</tr>
</tbody>
</table>

注：
1. 根据国务院批复的《全国重要江河湖泊水功能区划（2011~2030 年）》及各省人民政府批复的水功能区划填报水功能区一级、二级名称；
2. 起始断面经纬度指以县级行政区套对应水功能区断面后的起始断面经纬度；
3. 经纬度坐标系应换算为十进制度的形式填报，保留小数点后 4 位，例：东经 114.3250°，北纬 34.6675°；
4. 水质目标根据国家或省批复的对该功能区管理相关规定制定的水质标准填报；
5. 是否省界，填写“是”或“否”；
6. 2020 年是否要求达标，应按照各级人民政府批复的最严格水资源管理制度办法或实施方案制定的要求，填写“是”或“否”；
7. 现状水质超标因子及倍数按照全指标监测结果填写；
8. 水功能区水质达标评价只评价 COD 和氨氮的达标情况；
9. 对于省级行政区最新批复调整的水功能区，填报时进行标记。
附表 2-2 省（自治区、直辖市）超载区县级行政分区内水功能区划情况及水质达标评价表（2015 年）（试点 2014 年）

<table>
<thead>
<tr>
<th>水资源一级区</th>
<th>水资源二级区</th>
<th>水资源三级区</th>
<th>河流系</th>
<th>省级行政区</th>
<th>地级行政区</th>
<th>县级行政区</th>
<th>水功能区</th>
<th>代表断面</th>
<th>河流名称</th>
<th>是否省界</th>
<th>现状水质</th>
<th>2020 年是否要求达标 COD 和氨氮</th>
<th>达标评价</th>
<th>全指标监测结果</th>
<th>主要超标因子及倍数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

注：1. 根据国务院批复的《全国重要江河湖泊水功能区划（2011-2030 年）》及各省人民政府批复的水功能区划填报水功能区一级、二级名称；
2. 起始断面经纬度指以县级行政区套对应水功能区分割后的起始断面经纬度；
3. 经纬度坐标系应换算为十进制度的形式填报，保留小数点后 4 位，例：东经 114.3250°、北纬 34.6675°；
4. 水质目标根据国家或省批复的对该功能区管理相关规定制定的水质标准填报；
5. 是否省界，填写“是”或“否”；
6. 2020 年是否要求达标，应按照各级人民政府批复的最严格水资源管理制度办法或实施方案制定的要求，填写“是”或“否”；
7. 现状水质超标因子及倍数按照全指标监测结果填写；
8. 水功能区水质达标评价只评价 COD 和氨氮的达标情况；
9. 有条件的地区可将地级行政区内的水功能区分解到水功能区套县级行政区边界，缺乏资料的地区仅对超载区的水功能区分解到县域。
附表 2-3 省（自治区、直辖市）地级行政分区入河污染物限排量统计表（2015 年）（试点 2014 年）

<table>
<thead>
<tr>
<th>水资源</th>
<th>水资源</th>
<th>水资源</th>
<th>水功能区</th>
<th>省级行政区</th>
<th>地级行政区</th>
<th>COD (t)</th>
<th>氨氮 (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>一级区</td>
<td>二级区</td>
<td>三级区</td>
<td>一级</td>
<td>二级</td>
<td>一级</td>
<td>二级</td>
<td>现状入河量</td>
</tr>
</tbody>
</table>

附表 2-4 省（自治区、直辖市）地级行政区县级行政分区入河污染物统计表（2015 年）（试点 2014 年）

<table>
<thead>
<tr>
<th>水资源</th>
<th>水资源</th>
<th>水资源</th>
<th>省级行政区</th>
<th>县级行政区</th>
<th>水功能区</th>
<th>现状废污水入河量</th>
<th>主要污染物现状入河量</th>
<th>2020 年主要入河污染物限制排污量*</th>
</tr>
</thead>
<tbody>
<tr>
<td>一级区</td>
<td>二级区</td>
<td>三级区</td>
<td>一级行政区</td>
<td>河流水系</td>
<td>一级</td>
<td>二级</td>
<td>(万 m³/a)</td>
<td>COD(t/a)</td>
</tr>
</tbody>
</table>

*注：有条件的地区可将地级行政区 2020 年主要入河污染物限排量分解到县级行政区，填报县级行政区 2020 年主要污染物限制排污量；无资料的地区可不填主要入河污染物限排量
附表 2-5 ____省（自治区、直辖市）______地级行政分区水质要素评价成果表（2015 年）（试点 2014 年）

<table>
<thead>
<tr>
<th>水资源一级区</th>
<th>水资源二级区</th>
<th>水资源三级区</th>
<th>河流水系</th>
<th>省级行政区</th>
<th>地级行政区</th>
<th>水功能区</th>
<th>个数</th>
<th>水质达标率 Q（%）</th>
<th>水质达标率控制指标 Q_0（%）</th>
<th>Q/Q_0</th>
<th>COD 超排程度 P/P_0</th>
<th>氨氮超排程度 P/P_0</th>
<th>评价等级</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

注：1、选择 COD、氨氮入河污染物中超排程度最大值 P/P_0 作为评价等级指标。
 2、评价等级分为不超载、临界状态、超载、严重超载。

附表 2-6 ____省（自治区、直辖市）______地级行政分区______县级行政分区水质要素评价成果表（2015 年）（试点 2014 年）

<table>
<thead>
<tr>
<th>水资源一级区</th>
<th>水资源二级区</th>
<th>水资源三级区</th>
<th>河流水系</th>
<th>省级行政区</th>
<th>地级行政区</th>
<th>县级行政区</th>
<th>超载区水功能区水质达标率（%）</th>
<th>水质达标目标要求 Q_0（%）</th>
<th>评价等级</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

注：1、评价等级分为不超载、临界状态、超载、严重超载
附表 2-7 流域重点河流水系水环境状况评价

<table>
<thead>
<tr>
<th>流域名称</th>
<th>重点河流名称</th>
<th>水功能区总数</th>
<th>水质达标水功能区个数</th>
<th>水功能区水质达标率（%）</th>
<th>各水功能区 COD 现状入河总量</th>
<th>各水功能区 2020 年 COD 限排总量</th>
<th>COD 超排率</th>
<th>各水功能区氨氮现状入河总量</th>
<th>各水功能区 2020 年氨氮限排总量</th>
<th>氨氮超排率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

注：1、各河流水系水功能区水质达标率为达标水功能区个数与水功能区总数的比值；
2、COD 或氨氮超限排率为 COD 或氨氮现状入河总量与 2020 年限排总量的比值。